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Using a homemade setup, we investigated the adhesion between soft elastic sub-
strates bearing surface microstructures (array of caps [resp., holes] of height [resp.,
depth] h) and a smooth surface of the same rubber. In the framework of the classi-
cal model developed by Johnson, Kendall, and Roberts, we show the following. (i)
The existence of a critical height hc for the microstructures, resulting from a com-
petition between the adhesion energy and the elastic deformation energy necessary
to invade the pattern: for h < hc, the bead and the substrate are in intimate contact
even when the applied force is zero, and for h > hc, an air film remains interca-
lated in the microstructure, and the contact is limited to the top of the caps or
between the holes. The transition between these two states can be induced by
increasing the squeezing force. (ii) The adhesion energy, W, of intimate contacts
(h < hc) decreases as the height increases. Suspended contacts correspond to a
low adhesion and a nearly Hertzian behavior.

Using simple scaling arguments and a two-level energetic description (single
microstructure and whole contact) we propose a semiquantitative description of
these observations.
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INTRODUCTION

Contacts between elastic bodies have been widely studied as early as
the end of the 19th century, starting with the theory developed by Hertz
in 1882 [1] describing the elastic strains induced when two spherical
elastic lenses are put in contact. However, the Hertz model does not
take into account the adhesion between two bodies, which is usually
not negligible for real systems. A century later, an adhesive contri-
bution was added to this description in two different ways: a first model
was developed by Johnson, Kendall, and Roberts (JKR, 1971 [2]), and
another one by Derjaguin, Muller, and Toporov (DMT, 1975 [3]). These
two models were unified few years later first by Muller et al. [4] and
then by Maugis [5]. Whereas the DMT description applies quite well
to hard contacts [4], the JKR model is now well accepted as the best
approach to describe contacts between soft bodies [6] such as the sili-
cone rubbers used in the present study. In the following, we denote
W0 as the adhesion energy and E as the soft material Young’s modulus.

In any case, Hertz, JKR, and DMT theories apply to topographically
smooth substrates that seldom exist in the real world where the rough-
ness induces a partial contact between the bodies. What then is the
real contact area between rough solids? This fundamental question
is of practical importance in fields as diverse as electrical or thermal
conductivity of junctions, adherence of tires on roads, and control of
friction forces. Hence, many studies have aimed at relating the real
contact area with the applied load between rough and smooth bodies.
A first method proposed by Greenwood and Williamson [7] and exper-
imentally validated in Ref. [8] used the Hertz model to describe con-
tacts at the scale of individual asperities. In the case of plane
substrates, these authors have shown that the real contact area
increases linearly with load, which is the basis for most friction mod-
els. Adhesion was introduced by Fuller and Tabor [9] and Persson [10]
using the JKR model to describe the microcontacts at each asperity,
whereas the roughness was modeled with either a Gaussian [9] or a
self-affine [10] distribution of heights. The ability of a soft substrate
to coat an asperity results from a competition between the deformation
energy via E and the gain in surface energy via W0 [10]. It has then
been shown that adhesion drastically decreases with roughness, this
decrease being more rapid for small elastic lengthsW0=E. A paradox
then arises for which adhesion energy can be very weak although
the real contact area is a sizeable part of the apparent area. This
should give rise to high friction forces with weak adhesion. Experi-
mental evidence for such behaviors has been given in Refs. [9], [11],
and [12].
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In contrast with the random roughness dealt with in the studies
described previously, Johnson et al. have modeled periodic one- or
two-dimensional wavy surfaces in the absence [13] or presence [14]
of adhesion. These authors have shown that at small load and for
weakly adhesive surfaces, the system can be described by a superim-
position of noninteracting Hertz or JKR contacts, whereas at higher
loads, the neighboring contacts became coupled, a result confirmed
in Ref. [15]. In the case of adhesive bodies, this theoretical model gives
rise to a sharp transition in the variation of the contact area per
asperity with the applied load.

Recent developments in microfabrication techniques offer new per-
spectives in making well-defined topographically structured surfaces
at smaller and smaller scales that can be used in adhesion experi-
ments as model substrates of controlled roughness. This control of
adhesion via surface topography is a welcome addition to the well-
known chemical control. In this article, we present an experimental
study where the adhesion is purely controlled by the physical proper-
ties of the surfaces, i.e., by their topography. Using caps or holes, we
have characterized the adhesion at the scale of the entire contact as
well as the contacts at each asperity. The experiments are semiquan-
titatively interpreted on the basis of a simple theoretical model.

MATERIALS AND METHODS

Substrates Fabrication

We have fabricated two types of microtextured substrates: surfaces
patterned with an hexagonal array of spherical caps (radius r� 1 mm,
mm, center-to-center distance k ¼ 4mm) and their negative replicas,
i.e., surfaces with the corresponding holes.

The fabrication uses a combination of hard and soft lithography.
Following a conventional photolithography step, the desired pattern
is replicated on a silicon wafer by deep reactive ion etching (DRIE).
After complete removal of the resist, cleaning, and activation of the
surface with a plasma treatment, the wafers are silanated with tride-
cafluorotrichlorosilane (ABCR) in vapor phase. (This treatment has
been used systematically in the course of the present study to facilitate
unmolding or to lower the surface energy and is generically denoted
‘‘silanization’’ hereafter.) We obtain, as a final result, hexagonal pat-
terns of holes (with depths h ranging from 100 nm to 1mm) in silanated
silicon wafers [16].

A curable polydimethysiloxane PDMS (Sylgard 184, Dow Corning,
Midland, MI, USA) is poured on these molds and cured at 65�C for
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24 h. The cured soft elastomer (Young’s modulus: E� 2 MPa) can then
be easily peeled off, and we get substrates that are microstructured
with spherical caps (Fig. 1a). This particular shape is a consequence
of the small depths etched during the DRIE step. These surfaces can
be used directly for adhesion tests or after silanization as molds to

FIGURE 1 Images of substrates patterned with 470-nm-high microstruc-
tures: (a) Scanning electron micrographs of a PDMS substrate covered with
caps. The bar represents 2 mm. (b) Images obtained through atomic force
microscopy in contact mode of a PU substrate with holes (replica of the PDMS
substrate with caps). (c) AFM topography image of a PU substrate with caps
used in (d) to determine its geometrical properties.
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fabricate negative replicas (i.e., structured with holes) using the same
process (Fig. 1b).

When a larger Young’s modulus was needed so that the surface
could be considered as nondeformable, we used a photocurable poly-
urethane (PU) (J91, Summers Optical, Hatfield, PA, USA) to replicate
these substrates. Again, the silanated PDMS surfaces are used as
molds for uncured PU, and cross-linking is obtained by exposure to
UV light (100 W) for 15 min. After peeling off the PDMS, we get hard
(E0 � 1.3 GPa) PU micropatterned surfaces.

The geometrical properties (height h, radius r) of the micropatterns
are characterized by atomic force microscopy (AFM) or scanning elec-
tron microscopy (SEM) (Fig. 1). These analyses also show that caps or
holes can be modeled as spherical asperities (Fig. 1d) with a given
radius of curvature q (Table 1) and that these surfaces are smooth
at the nanometer scale: roughness originates only from the micropat-
tern. In the following, the microstructures are described with a
roughly constant r � 1mm and a variable h.

Flat and smooth PDMS (resp., PU) surfaces are obtained by mold-
ing on a bare silanated silicon wafer (resp., smooth silanated PDMS).
They are used as reference surfaces.

Rubber beads are prepared with small droplets of uncured PDMS
deposited on a silanated glass slide [17]. They adopt a spherical shape
(typical contact angle � 65�), and after curing, we obtain semi-
spherical lenses with radii of curvature R (�1 mm). The radius of
curvature of each bead is carefully measured at its apex by inter-
ference microscopy. Again, these lenses can be silanated to lower their
surface energy.

TABLE 1 Height (or Depth) h, Radius r, and Radius of Curvature q of the
Caps (or Holes) Obtained through AFM Measurements on the PU Replicas

PDMS caps and PU holes PDMS holes and PU caps

h (nm) r (mm) q (mm) h (nm) r (mm) q (mm)

80 0.8 3.6 80 0.8 3.6
220 1.5 5.4 210 1.6 5.9
310 1.3 2.9 360 1.5 3.3
560 1.6 2.7 470 1.4 2.3
840 1.2 1.3 750 1.2 1.4

Accuracy is 10 nm for h and is 100 nm for r and q.
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Experimental Setup

The experimental setup [18] is based on the JKR experiment principle
[2]: the rubber bead is pressed against the substrate, and we measure
both the squeezing force F and the contact radius a. Figure 2 gives a
schematic representation of the setup.

The rubber bead is deposited at the end of a flexible glass lever (the
silicone elastomer naturally adheres to the glass) whose dimensions
(length 20 mm, width 1 mm, thickness 200 mm) have been chosen to
yield a normal spring constant kn well adapted to the force experienced
in the present study. Based on the geometry of the lever, a rough esti-
mation of this spring constant is kn� 20 mN �m�1 [19]. Each lever is
systematically individually calibrated using the added mass method
[20] with an accuracy of 3%. The force applied on the rubber bead is
measured through the deflection of the lever via the reflection of a
laser at its end. The reflected beam is collected on a two-quadrant
photodetector that gives access, after calibration, to the normal force
F exerted by the bead on the substrate. A three-axis micromanipula-
tor, set on the microscope stage, allows moving the bead.

The contact area is observed by interference microscopy (wave-
length 546 nm). As the distance between the bead and the substrate
is of the order of a few mm, interference fringes are clearly visible.

FIGURE 2 Schematic representation of the experimental setup. The contact
force F between the bead and the substrate is measured through the deflection
of a flexible lever using a reflected laser beam (upper part of the setup). The
contact is observed by interference microscopy (lower part).
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The resulting interferograms give an accurate measurement of the
contact area (radius a) and, after reconstruction, of the bead profile
close to the contact line [21].

Tests

We use the classical method of the so-called JKR test to measure the
adhesive and elastic properties of microstructured substrates. It con-
sists in squeezing the bead against the substrate by incremental steps
(here 2.5 mm). After each compressive step, a delay of 1 minute is held
to let the contact relax [22] before performing the measurement. The
full compression is followed by a decompression at the same velocity.
Forces applied on the contact range from �1.5 to þ1.5 mN. Unless
otherwise stated, the results reported here deal with the compression
step.

RESULTS

Smooth Substrates

Smooth and flat PDMS or PU surfaces are taken as reference sub-
strates and characterized using a soft PDMS bead through the method
described in the previous section. The compression can be analyzed
using the classical JKR theory [2]. This model leads to Eq. (1):

F ¼ Ka3

R
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6pW0Ka3

p
; ð1Þ

where the first term is simply the Hertz contribution [1]. The second
term (negative contribution) depends on the adhesion energy W0: the
force required to create a given contact area is reduced when adhesive
interactions exist between surfaces. For incompressible materials,
the contact stiffness K is a combination of the Young’s modulus of
the bead, Eb, and the one of the substrate, Es:

1

K
¼ 9

16

1

Eb
þ 1

Es

� �
: ð2Þ

In practice, we use an alternate form of Eq. (1) to determine K and
W0:

a3=2

R
¼ 1

K

F

a3=2
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
6pW0

K

r
: ð3Þ

The filled squares in Fig. 3 show the typical result of a JKR test
performed on a smooth PDMS substrate ða3=2=R versus F=a3=2Þ.
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A linear fit [Eq. (3)] gives the rigidity K ¼ 1.9� 0.2 MPa and the
adhesion energy W0 ¼ 43 � 5 mJ �m2 of the contact, in good agreement
with previous measurements taken from the literature [17].

It is possible to define another adhesion energy W0, during the
decompression, by fitting the linear part of this decompression
curve with Eq. (3). The adhesive hysteresis is then defined as the
difference DW ¼W0 �W0. Smooth PDMS surfaces lead to weak hys-
teresis compared with the involved adhesion energies: DW < 2 mJ �m2.
Again, this value is in good agreement with previous measurements
performed on the same system [23,24] and is attributed to free
oligomers in the bulk PDMS.

Using interference microscopy, one can reconstruct the contact pro-
file near the triple line (Fig. 4, dashed line). These profiles show that
the joint between the two PDMS surfaces is at right angles, which is
characteristic of JKR adhesive contacts where adhesion induces nor-
mal tensile stress at the contact edge.

Surfaces and beads can be silanated to tune the adhesion energy. JKR
tests then give W0 for various combinations: Wsil

0 ¼ 34� 5 mJ �m�2 if
only one surface is silanated, and W

sil=sil
0 ¼ 13� 3 mJ �m�2 if the treat-

ment is applied to both surfaces. As expected [17], W0 decreases with
silanization.

FIGURE 3 Variations of the contact force and the contact radius during the
compression experiments: F=a3=2 versus a3=2=R for a smooth PDMS substrate
(h ¼ 0) and the PDMS substrates with caps of various heights h. The slope of
these lines is inversely proportional to the contact rigidity, and the y-axis
crossing point is proportional to the square root of the adhesion energy.
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Finally, contacts of higher rigidity, i.e., hard PU surfaces against a
PDMS bead, have been tested. We measure Khard ¼ 3.0� 0.2 MPa, and
an adhesion energy Whard

0 ¼ 39� 5 mJ �m�2 with a bare PDMS bead
and Whard; sil

0 ¼ 28� 4 mJ �m�2 with a silanated bead. Hysteresis is
weak (4� 2 mJ �m�2) with bare PDMS bead and cannot be defined in
the silanated case.

Contacts between smooth substrates are used as a reference state to
study the role of a microstructuration on the adhesion properties.

Soft Microstructured Substrates

For PDMS substrates patterned with spherical caps, we observe three
distinct behaviors as a function of cap heights as shown in the com-
pression sequences of Fig. 5. For the smallest heights (h ¼ 80 nm
and 220 nm), the contact area is dark and the pattern disappears.
Because the bead and the substrate are made of the same polymer
(same refractive index), this dark contact area can be attributed to
an intimate contact between the bead and the substrate. For the
intermediate height (h ¼ 310 nm), at small forces, the pattern is still
observed under the contact, meaning that an air film remains

FIGURE 4 Profiles of the bead near the contact edge as a function of the nor-
malized radial coordinate r=a for a smooth substrate (h ¼ 0), an intimate con-
tact on a microstructured substrate (h ¼ 220 nm), and a suspended contact
(h ¼ 840 nm). The contact force F is zero. Smooth substrate and intimate con-
tact join the bead at right angles, as predicted by the JKR theory, while the
join is tangential for a suspended contact.
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intercalated between the caps. This case will be called hereafter ‘‘sus-
pended contact.’’ However, as the applied force increases, the pattern
disappears under the contact starting from a nucleation point at the
contact center, similar to the dewetting of the air film. For this height,
at low forces, only the tips of the asperities truly contact the bead. As
the force increases past the threshold force, the contact invades the
surface between the caps. For larger heights (h ¼ 560 or 840 nm),

FIGURE 5 Interference microscopy images of the contact on substrates cov-
ered with caps of various heights and for two values of the contact force.
The contact can be intimate (1a, 1b, and 2b) or suspended (2a, 3a, and 3b).
The white bar represents 50 mm.
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the pattern remains visible under the contact (suspended contact) in
the whole range of forces that can be explored with our setup.

At this stage we define a critical height hc for the caps so that a
transition between suspended and intimate contacts is observed at
zero contact force. The previous experimental observations give a
framing of hc: 220 nm < hc < 310 nm.

Force and contact radius measurements during a compression are
shown in Fig. 3 for micropatterned surfaces (open symbols). From
these curves, assuming the JKR description still holds, we determine
values for K and W. We find that the contact rigidity K is the same as
for smooth substrates whatever the height of the structures:
KPDMS ¼ 1.9� 0.2 MPa. On the other hand, the adhesion energy, W,
is strongly affected by the pattern. The variation of W=W0 with h is
plotted in Fig. 6. In the case of intimate contacts (filled squares), W
decreases with h, whereas suspended contacts (open triangles) yield
a low adhesion energy compared with the adhesion of smooth surfaces
ðW=WPDMS

0 � 4%Þ. This last value does not depend on h within our
experimental accuracy.

We have also measured the adhesive hysteresis from the decom-
pression curves. In the case of intimate contacts, the hysteresis is
enhanced and increases with h from 1 mJ �m�2 to 14 mJ �m�2, whereas

FIGURE 6 Adhesion energy W normalized by W0 as a function of the caps
height h (PDMS=PDMS contacts). Inset: Values for PU hard substrates cov-
ered with caps. For intimate contacts (full symbols), W=W0 decreases with h
and is well described with Eq. (12) (lines). Above h�, suspended contacts are
observed (open symbols).
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it remains small and close to the smooth substrate value for suspended
contacts (DW ¼ 4� 4 mJ �m�2). The transition from suspended to inti-
mate contacts induced by the normal load (for h ¼ 310 nm) is only vis-
ible for the compression. During the decompression, the intercalated
air layer between caps is never restored until the contact ruptures.

Through interference microscopy, we can determine the bead profile
for various loads. These profiles are shown in Fig. 4 for an intimate
contact (dotted line) and a suspended contact (solid line), in compari-
son with the smooth substrate (dashed line). Similar to smooth sub-
strates, intimate contacts correspond to a JKR profile with a vertical
tangent at the contact edge. This observation is another signature of
the presence of adhesion between the two surfaces. In contrast, the
bead and the substrate remain tangent in the case of suspended con-
tacts, which is typical of low adhesion systems. In this case, the profile
is also visible inside the contact area thanks to the intercalated air
layer. The caps are more squeezed at the center than at the edge,
which can simply be attributed to the normal stress field distribution
[2,25] that reaches a maximum at the center of the contact.

Influence of the Adhesion Energy

With silanated beads and substrates, we can compare these results for
different adhesion energies. After such modifications, the main fea-
tures (the existence of the intimate and suspended contacts) are
qualitatively still observed. However, quantitatively, the critical
height hc varies with the adhesion energy. We get 80 nm < hsil

c <
310 nm and h

sil=sil
c < 80 nm for one or both silanated surfaces, respect-

ively. Thus, hc decreases as the adhesion becomes weaker.

Influence of the Contact Stiffness

Rigid PU substrates patterned with caps yield the same regimes with
increasing cap heights: first, for small values of h, intimate contacts at
all forces; second, for intermediate values, there is a critical force
separating regimes of intimate and suspended contacts; and finally,
for larger values of h, suspended contacts at all forces (in the range
of forces explored with the present setup). The critical height hc is here
measured to be between 360 nm and 470 nm. As for PDMS substrates,
the adhesion energy, W=WPU

0 , decreases with h (Fig. 6 inset) for inti-
mate contacts and drops to weak values ðW=WPU

0 ¼ 5%Þ for suspended
contacts (h > 470 nm). Finally, the rigidity, KPU, is roughly constant
for both flat and patterned substrates (KPU ¼ 3.5� 0.2 MPa) in good
agreement with Eq. (2).
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Caps versus Holes

The same JKR test was used with the complementary replicas, i.e.,
substrates patterned with holes. Some similarities with the substrates
with caps can be noticed: For holes shallower than a threshold depth
hc, the whole contact is of the intimate type similar to caps (Fig. 7a).
Interestingly, this critical depth has the same value as the critical
height measured on substrates with caps (hc � 310 nm for untreated
surfaces). Compared with smooth surfaces, the intimate contacts
(h < hc) correspond to an enhanced adhesive hysteresis (DW �
10 mJ=m2) that increases as the holes’ depth increases, showing again
a strong similarity with the caps.

A major difference between caps and holes appears when holes are
deeper than hc. Although the transition from a suspended state to an
intimate one can still be triggered by increasing the contact force
(without any transition in the JKR curve), the intimate state
nucleated at the contact center does not propagate to the whole con-
tact and remains limited to its central region (radius ac). Thus, for
the transiting substrates, coexistence between the suspended and
intimate contacts can be observed (Fig. 7b) for compression and
decompression. In this case, during the decompression, the edge of
the contact retracts on the suspended region while the size of the
central region stays nearly constant until the edge of the contact
reaches the collapsed area. It corresponds to a smooth transition
on the JKR curve (results not shown). Consequently, the hysteresis
is not defined, but the pull-off force is drastically enhanced, as it
increases by 30% in comparison with smooth substrates. For even
deeper holes, the contacts are suspended whatever the accessible
external load (Fig. 7c).

Compared with smooth substrates, the adhesion energy is smaller
for contacts involving a surface patterned with holes (W � 30 mJ �m�2),
as was observed for caps. However, surprisingly, there is no depen-
dence of this energy on the depth of the holes. The adhesion energy
is nearly constant and is not affected by the state of the contact (inti-
mate, mixed, or suspended) or the appearance of the intimate contact
zone of the transiting substrates (Fig. 8).

INTERPRETATION AND DISCUSSION

As the substrates and beads used here are typically a couple of
millimeters thick compared with contact radii smaller than 100
mm, the conditions of semi-infinite media are met for the JKR
theory [26].
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Intimate versus Suspended Contacts

Equation (1), valid at the scale of the whole contact, can also be used to
describe a contact at the level of a single cap [8,9] (at this scale the

FIGURE 7 Interference microscopy images of the contacts on substrates with
holes of various depths and for a positive load F ¼ 0.6 mN. The contact is inti-
mate for h < hc (a), mixed with an intimate zone at the center of a suspended
contact for hc < h < h� (b), and suspended for h > h� (c). The white bar repre-
sents 50 mm.
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rubber bead can be seen as a flat surface). We denote a1 the contact
radius for this asperity, F1 the corresponding local contact force (r1

being the corresponding normal stress), q the cap’s radius of curvature,
and W0 the adhesion energy between the smooth PDMS surfaces. With-
out external load on the whole contact, there is still a force distribution
under the contact; however, as the suspended contact case corresponds
to a weak adhesion energy, W, the local force, F1, can be neglected in
front of the adhesive term qW0 and at this scale Eq. (1) leads to

a3
1 ¼ h0q

2 ð4Þ

where h0 ¼ 6pðW0=KÞ is the so-called elastic length.
In the absence of external load and starting from a suspended situ-

ation, a criterion for collapse is that the size of the contact becomes of
the order of the radius, r, at the basis of the cap radius itself: a1 � r.
Assuming that the cap is a portion of a sphere (q � r2=2 h for h << r),
we obtain the critical height hc:

hc �
1

2

ffiffiffiffiffiffiffiffi
rh0

p
: ð5Þ

FIGURE 8 Adhesion energy W as a function of the holes’ depth h for PDMS
substrates structured with holes. At low depths, the contacts are always inti-
mate contacts (filled squares). Above the critical depth, hc, a transition
between a suspended and a mixed suspended=intimate contact can be induced
through an increase of the force (open triangles). For deeper holes, the contact
remains suspended in our range of forces (gray circles). The dotted line is a fit
of the data with Eq. (15).
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Values for h0 and hc can be estimated for the PDMS=PDMS system: for
r ¼ 1 mm: h0 ¼ 410 nm and hc � 400 nm. If we keep in mind the rough
assumptions leading to this result, it agrees reasonably well with the
experimental observation that hc� 200� 300 nm. Because r is fixed,
Eq. (5) also predicts that hc /

ffiffiffiffiffiffi
h0

p
/

ffiffiffiffiffiffiffi
W0

p
. This conclusion is in quali-

tative agreement with the experimental results on silanated substrates
because we find that hc indeed decreases for less adhesive surfaces.

Regarding the role of contact rigidity, however, a direct comparison
with the experiments performed on hard PU substrates shows a slight
increase of hc for a contact stiffness about two times as large [cf.
Eq. (2)], although Eq. (5) predicts hc / 1=

ffiffiffiffi
K
p

, meaning, from Eq. 2,
that the new hc should be divided by

p
2. The origin of this discrepancy

may be attributed to minor corrections mainly due to a variation of the
PDMS cap radius under compression (Poisson’s ratio �1

2) and the
assumption that the cap keeps its spherical shape even at large defor-
mations for soft substrates. These two points should introduce differ-
ent numerical factors between hard and soft surfaces. Moreover, the
assumption of total independence between adjacent pillars can also
be questioned at that point. From a qualitative point of view, one
expects from Eq. (5) suspended contacts on the whole range of thick-
nesses (hc ! 0), even for a large elastic modulus.

Equation (5) can be derived differently using an energy balance and
simple scaling arguments. With no external force, the free energy, =s,
of a single cap in the suspended regime results from two contributions:
the elastic deformation and the gain in surface energy. The transition
from a suspended to an intimate contact is obtained when the contact
radius a1 � r. Thus, ignoring numerical factors, =s can be estimated at
the transition

=s � K
h

r

� �2

r3 �W0r2 � Krðh2 � h2
c Þ ð6Þ

where we have identified hc �
ffiffiffiffiffiffiffiffi
rh0

p
.

Because the change of sign of the free energy is equivalent to an
energy minimization in a scaling description, we can conclude that
for h > hc the free energy is positive and no transition occurs, whereas
for h < hc, =s is negative and the intimate contact is preferred. This
analysis applies to zero external force and only allows determining
the equilibrium state just after the contact has been established dur-
ing a compression experiment.

It is instructive to estimate the normal external force F ¼ Fc

required to observe the transition between suspended and intimate
contacts. Keeping a scaling approach, the work (�F1 �h) needed to
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squeeze a single microstructure is then added to Eq. (6), leading to

=s � K
h

r

� �2

r3 �W0r2 � r1r2h � hr2ðrc � r1Þ ð7Þ

where

rc ¼ W0
1

hh2
c

ðh2 � h2
c Þ ð8Þ

As the experimentally accessible parameter is the normal force, F,
let us write the equation linking F and r1. The transition always
occurs at the contact center, as a direct consequence of the axisym-
metric stress field distribution with a maximum at the contact center.
The Hertz theory gives

r1 ¼
3

2p/
K2F

R2

� �1=3

: ð9Þ

The surface fraction covered by the caps, /, accounts for the effec-
tive surface reduction due to the pattern (the stress only applies on
the caps). Finally, the critical force is

Fc � KR2/3 � h0

hh2
c

ðh2 � h2
c Þ

� �3

� KR2/3

r3
ðh� hcÞ3: ð10Þ

The last equality of Eq. (10) is written in the limit of h � hc.
Equation (10) shows that cap heights lower than hc correspond to

negative critical forces: for these heights an intimate contact is
observed whatever the applied force, a result consistent with our pre-
vious conclusions. Let us note that a more rigorous calculation based
on the expression of the JKR force [Eq. (1)] on one cap yields the same
result [27].

Because the range of forces accessible with our experimental setup
is limited, we have been able to measure a critical force for only one
height for each system: for h ¼ 310 nm in the PDMS=PDMS case
and h ¼ 80 nm if both surfaces are silanated. In fact, for caps higher
than hc, Fc increases rapidly with h (a h3), which explains why the
transition is observed only in one case. Given the accuracy of our mea-
surements, it makes more sense to compare the value of hc inferred
from Eq. (10) at the point where a force-induced transition has been
observed, with the framing given by the experiments. The theoretical
values, hc � 200 nm for untreated PDMS surfaces and hc � 50 nm if
both surfaces are silanated, are again in good agreement with
the experimental framing: 220 nm < hc < 310 nm in the untreated
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case and hc � 100 nm for silanated surfaces, thus confirming the
relevance of the model.

After the nucleation of an intimate contact at the center, its spon-
taneous propagation to the whole contact area is ensured by the
adhesion energy due to an increase in the real contact area (the bead
adhering to the substrate between caps). The corresponding gain in
surface energy locally increases the stress, which becomes large
enough to overcome the critical stress under the whole contact. The
suspended state can be seen as a metastable state for the system.

Let us note at this point that, dealing with a hexagonal array of
caps, the space between the caps is interconnected, allowing the
propagation of the collapsed state. Our simple description predicts
a very different behavior if this propagation is stopped along one
direction: for example, for an array of lines. A further study of these
effects on more subtle geometries such as mazes or percolated=
unpercolated two-dimensional surfaces would be very interesting in
many respects.

Adhesion Energy for the Whole Contact

To estimate the adhesion energy at the contact scale, let us come back
to an energetic description. Here, we have to separate the two regimes:

For ‘‘suspended contacts’’ (h > hc), at zero contact force, the
adhesive contribution to the free energy is W0a2

1n where n � /ða=rÞ2
is the number of caps involved in the contact area and a1 is the contact
radius for each cap [Eq. (4)]. Thus, the adhesion energy for suspended
contacts is given by

W � /W0
ðh0q2Þ2=3

r2
: ð11Þ

With PDMS substrates (h0 ¼ 410 nm, q ¼ 2mm, and / ¼ 6%) we find
W=W0� 8%, close to the experimental value (� 4%). The exact
variations of W with h0 or q, however, could not be measured, as the
ranges of accessible q (1.5 to 5 mm) and h0 (410 to 130 nm) are too
narrow.

For ‘‘intimate contacts’’ (h < hc), the adhesion energy, W, results
from a competition between the gain in surface energy for the caps
approximated by W0r2=/ and the elastic contribution needed to coat
a cap K :h2r ( ¼ (W0=h0) �h2r). The contribution due to the surface
increase can be neglected in front of the elastic term for caps radii lar-
ger than h0. Because the number of caps involved in the contact is
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unchanged (�/a2=r2), this equality leads to

W ¼ W0 1� h

h�

� �2
 !

ð12Þ

where we have introduced the new threshold height h�:

h� ¼

ffiffiffiffiffiffiffiffi
rh0

/

s
: ð13Þ

Figure 6 shows the best fit (lines) with Eq. (12) for the experimental
measurements with h� as the only adjustable parameter. The model
accounts well for the measured variations of W(h). For PDMS sub-
strates, the fit gives h� ¼ 360 nm, whereas Eq. (13) gives a value of
600 nm. The scaling approach used in our description accounts well
for the orders of magnitude of the experimental results.

In both analyses (intimate and suspended contacts), the elastic con-
tribution to the free energy due to the elastic deformation of the bead
and the substrate (when it is made of PDMS) leads to a contact rigid-
ity, K, which is the same as for smooth substrates. This result is not
surprising because the Young’s modulus is associated with the bulk
elastic strains that extend to a volume of the order of a3 (far larger
than the volume of the thin cap layer � a2h) in both elastic media.
This conclusion agrees with the experimental data, as indeed we find
a contact rigidity nearly independent of h.

Interestingly, we measure an increase of hysteresis with h for inti-
mate contacts. In the case of bare PDMS or PU substrates, because the
hysteresis was negligible on smooth surfaces, it is here clearly corre-
lated to the geometrical patterning of the surface. A quantitative
analysis of the hysteresis is more difficult because it would require a
precise description of the crack propagation during the decompression
experiment. Because such a description is out of the scope of the
present study, we stay at the qualitative level. However, this high hys-
teresis may be of great importance for many practical applications.

Caps versus Holes

Following the same approach, we can estimate the critical values for
the holes’ depth and the contact force for which a transition from a
suspended to an intimate contact is observed. Let us note that because
of the topology of the pattern, the intrinsic permeability of silicone
elastomers to air is a key point that governs the kinetics of formation
of this collapsed area. There would be no collapse for materials not per-
meable to the surrounding fluid (liquid or gas). Given the permeation
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coefficient of the PDMS to nitrogen (245 � 10�10 cm3.cm=cm2.s.cmHg)
[28], there is ample time for the air contained in a hole to escape
through the material during an elementary compression step (or to fill
it during decompression).

Omitting again all numerical factors, the free energy of an intimate
contact on holes is also given by Eq. (7), leading to the critical depth
hcðholesÞ �

ffiffiffiffiffiffiffiffiffiffiffi
r � h0

p
. The critical force that can induce the collapse is

still given by Eq. 8 with rc
1 ¼ Fc

1=ðp � r2Þ. The experiments confirm
these conclusions because intimate contacts were observed for zero
contact force, F, at a depth equal to the critical height of caps. The var-
iations of the critical depth with h0 are also in good agreement with
our prediction, because decreasing h0 by silanization leads to a
decrease in the experimental values for the critical depth.

However, the propagation of an intimate contact, nucleated above a
critical stress, differs notably between caps and holes. For holes, the
intimate contact propagation needs a further increase in the contact
force, F, whereas it is spontaneous in the case of caps. A direct conse-
quence of this situation is the coexistence in the same contact of an
intimate contact in the center and a suspended one at the periphery.

The critical stress beyond which the contact collapses in the holes
can be estimated using the JKR stress distribution [2]. The measure-
ments of both the radius of the intimate contact part, ac, and the
radius of the whole contact, a, allow one to evaluate the stress at
the radial position, ac, that limits the suspended holes from the col-
lapsed ones. By hypothesis, this stress is equal to rc, and we get

rc ¼
3aK

2pR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

c

a2

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
3WK

2pa

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
c=a

2
p ; ð14Þ

The estimation of rc through Eq. (14) as a function of a for
h ¼ 470 nm shows that the edge of the intimate contact part corre-
sponds to a stress value that is approximately constant versus a dur-
ing the whole compression phase. The order of magnitude obtained
in this way for rc (5.3 104 Pa) is in agreement with the value obtained
from Eq. (8) (6.4 104 Pa).

Finally, we can derive the adhesion energy for suspended contacts; the
main term is the adhesion energy of the surfaces in contact out of the
holes. The work of the applied load and the elastic and adhesive energies
due to the penetration of the bead in the holes are negligible. Thus

WðhÞ ¼W0ð1� /Þ: ð15Þ

This expression also applies to the intimate case and the adhesion energy
on substrates with holes is independent of h and of the contact’s nature.
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The numerical value from Eq. (15) is plotted as the dotted line in Fig. 8;
the gray area is the accuracy on W0 and, thus, on, W (�13%). There is a
good agreement between theory and experiments.

CONCLUSION

Although the influence of roughness on adhesion properties between
two surfaces has many practical implications, experiments dealing
with real rough surfaces are usually difficult to interpret because of
the distribution of involved characteristic lengths.

The model microfabricated elastomeric surfaces used in the present
study circumvent this difficulty in a way similar to how a well-defined
pattern can affect the wetting properties of a substrate [29]. Along this
line, there is quite a strong analogy with the so-called Cassie–Baxter
to Wenzel wetting transition [30].

To summarize, we have investigated the adhesion of such sub-
strates, and we show the following:

. There exists a critical height for the microstructure above which an
air film remains intercalated under the contact area (suspended
contact).

. For caps, this suspended state is metastable because above a given
squeezing force the two surfaces come in to intimate contact at
a nucleation point. This contact then propagates to the whole
contact area.

. For holes, the same behavior is observed except that the intimate
contact does not propagate and stays limited to the central region
of the contact area.

The observed phenomena and in particular the evolution of the
adhesion energy with the height of the structures can then be quanti-
tatively interpreted with simple scaling arguments.

Our study also leads to some problems that would be quite fascinat-
ing to study. We list here a few of them.

We have tested here very symmetric geometries (hexagonal array of
caps or holes). The main difference between these two situations is in
the propagation of the intimate state to the whole contact because the
transition from suspended to intimate contacts needs first a nucleation
point and then a continuous path to propagate from one pattern to the
next. An anisotropic pattern either via the distribution of elementary
patterns or through their shape (the more drastic case being an array
of lines) should result in an anisotropy for the whole contact. It would
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be interesting to investigate more deeply this prediction and to corre-
late it with the example of animals that develop fibrillar and=or lamel-
lar structures [31] at the tip of their legs to adhere on various
substrates.

The permeability of silicone elastomers to gases and the quasistatic
way the experiments are performed are also points deserving further
investigation. For our system, the air entrapped in the holes has
enough time to escape through the PDMS. However, it is possible to
play on this parameter, for instance, by using less permeable rubbers
or by performing the experiments in a liquid medium such as water.
One then expects interesting kinetic effects such as suction-cup
effects. As a matter of fact, conducting the experiments at different
timescales should lead to the same result, providing that during a slow
compression the entrapped medium has enough time to escape,
whereas this is not the case for a fast decompression. This situation
should lead to a strong hysteresis.

Finally, let us mention that we have restricted ourselves here to
purely elastic substrates. The use of dissipative materials in conjunc-
tion with surface textures is a potentially powerful way to modulate
the adhesion [32]. A natural extension of the present work would
be its application to friction phenomena. Preliminary experiments
have shown that friction can induce the coexistence between the
suspended and intimate contacts under the same contact (Fig. 9).
More experiments are under way in these two directions.

FIGURE 9 Interference microscopy images of contacts on a substrate with
caps (h ¼ 560 nm) translated at various velocities, V, while the normal load
is maintained at 0.7 mN. In the static regime, the contact is suspended. The
arrow indicates the direction of translation of the substrate (bottom view).
Starting from a situation where an intimate contact has been nucleated by a
defect, a dynamically stabilized suspended=intimate contact can be observed
at finite velocity, V. The size of the intimate part of the contact decreases with
V. The bar represents 50 mm.
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1967).
[20] Cleveland, J. P., Manne, S., Bocek, D., and Hansma, P. K., Rev. Sci. Instr. 64,

403–405 (1993).
[21] Roberts, A. D. and Tabor, D., Proc. Roy. Soc. A. 325, 323–345 (1971).
[22] Maugis, D. and Barquins, M., J. Phys. D: Appl. Phys. 11, 1989–2023 (1978).
[23] Silberzan, P., Perutz, S., Kramer E. J., and Chaudhury M. K., Langmuir 10,

2566–2570 (1994).
[24] Choi, G. Y., Kim, S., and Ulman, A., Langmuir 13, 6333–6338 (1997).
[25] Verneuil, E., Buguin, A., and Silberzan, P. to be published.
[26] Shull, K. R., Ahn, D., and Mowery, C. L., Langmuir 13, 1799–1804 (1997).
[27] We thank one of the referees for pointing out this point to us.
[28] Singh, A., Freeman, B. D., and Pinnau, I., J. Poly. Sci. B 36, 289–301 (1998).

Adhesion on Microstructured Surfaces 471

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
2
0
:
2
9
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1
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